login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A197227
Primes that are not the sum of at least two consecutive primes.
3
2, 3, 7, 11, 13, 19, 29, 37, 43, 47, 61, 73, 79, 89, 103, 107, 113, 137, 149, 151, 157, 163, 167, 179, 191, 193, 227, 229, 239, 241, 257, 277, 283, 293, 307, 313, 317, 337, 347, 359, 367, 383, 389, 397, 409, 419, 433, 461, 467, 509, 521, 541, 547, 557, 569
OFFSET
1,1
COMMENTS
Complement of A067377 in the primes. For the primes less than 10^6, these primes make up about 56%.
LINKS
FORMULA
Prime(n) such that A307610(n) = 1. - Ray Chandler, Sep 21 2023
MAPLE
P:= [seq(ithprime(i), i=1..10^3)]:
S:= ListTools:-PartialSums([0, op(P)]):
sort(convert(convert(P, set) minus {seq(seq(S[i]-S[j], j=1..i-2), i=1..10^3+1)}, list)); # Robert Israel, May 09 2021
MATHEMATICA
lim = 1000; pFound = {}; ps = Prime[Range[PrimePi[lim]]]; sm = ps; i = 0; While[i++; j = 1; While[sm[[j]] = sm[[j]] + ps[[i + j]]; sm[[j]] <= lim, If[PrimeQ[sm[[j]]], AppendTo[pFound, sm[[j]]]]; j++]; j > 1]; Complement[ps, pFound]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 03 2011
EXTENSIONS
Definition clarified by Jonathan Sondow, May 18 2013
STATUS
approved