login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307610
Number of partitions of prime(n) into consecutive primes.
6
1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 2, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 1, 2
OFFSET
1,3
COMMENTS
a(n) - 1 = number of partitions of prime(n) into two or more consecutive primes. - Ray Chandler, Sep 26 2023
LINKS
FORMULA
a(n) = [x^prime(n)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^prime(k).
a(n) = A054845(A000040(n)).
EXAMPLE
prime(13) = 41 = 2 + 3 + 5 + 7 + 11 + 13 = 11 + 13 + 17, so a(13) = 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 18 2019
STATUS
approved