login
A307608
Number of partitions of n^2 into consecutive positive squares.
2
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
OFFSET
1,5
FORMULA
a(n) = [x^(n^2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2).
a(n) = A296338(A000290(n)).
a(n) >= 2 for n in A097812.
EXAMPLE
29^2 = 20^2 + 21^2, so a(29) = 2.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 18 2019
STATUS
approved