login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n^2 into consecutive positive squares.
2

%I #5 Apr 18 2019 16:51:48

%S 1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1

%N Number of partitions of n^2 into consecutive positive squares.

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F a(n) = [x^(n^2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2).

%F a(n) = A296338(A000290(n)).

%F a(n) >= 2 for n in A097812.

%e 29^2 = 20^2 + 21^2, so a(29) = 2.

%Y Cf. A000290, A030273, A034705, A037444, A097812, A151557, A296338.

%K nonn

%O 1,5

%A _Ilya Gutkovskiy_, Apr 18 2019