login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307605
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...
4
1, 1, 2, 5, 12, 20, 48, 81, 169, 305, 580, 1009, 1966, 3338, 6067, 10503, 18730, 31633, 55641, 93151, 160389, 267585, 452762, 747016, 1253644, 2049943, 3390786, 5516227, 9034745, 14572790, 23668066, 37918484, 61042425, 97231826, 155292944, 245774727, 389998116
OFFSET
0,3
COMMENTS
Weigh transform of A050369.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^(k*A074206(k)).
a(n) ~ ((2^(-1-r) - 1) * Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(4 + 2*r)) * exp((2+r)/(1+r) * ((2^(-1-r) - 1) * Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (2^(1/50) * sqrt(Pi*(2+r)) * n^((3 + r)/(4 + 2*r))), where r = A107311 is the root of the equation zeta(r) = 2. - Vaclav Kotesovec, Mar 18 2021
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 20*x^5 + 48*x^6 + 81*x^7 + 169*x^8 + 305*x^9 + ...
MATHEMATICA
terms = 36; A[_] = 1; Do[A[x_] = (1 + x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 18 2019
STATUS
approved