login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244396
a(n) = Sum_{k=1, n} phi(k)*index(k, n), with phi(k) the Euler totient A000010(k) and index(k,n) the position of 1/k in the n-th row of the Farey sequence of order k, A049805(n,k).
0
2, 5, 12, 21, 39, 54, 87, 117, 162, 204, 279, 333, 435, 516, 624, 732, 900, 1017, 1224, 1380, 1590, 1785, 2082, 2286, 2616, 2886, 3237, 3543, 4005, 4305, 4830, 5238, 5748, 6204, 6816, 7266, 8004, 8571, 9279, 9879, 10779, 11373, 12360, 13110, 14010, 14835
OFFSET
1,1
LINKS
R. Tomás, From Farey sequences to resonance diagrams, Phys. Rev. ST Accel. Beams 17, 014001 - Published 29 January 2014.
R. Tomás, Asymptotic behavior of a series of Euler's Totient function times the cardinality of truncated Farey sequences, arXiv:1406.6991 [math.NT], 2014 (see Chapter 5, Evaluating ...).
FORMULA
a(n) = Sum_{k=1, n} A000010(k)*A049805(k, n).
a(n) = n^3/(6*zeta(3)) + O(n^2). (see (22) in Tomás link).
MATHEMATICA
a[n_] := With[{f = FareySequence[n]}, Sum[EulerPhi[k] FirstPosition[f, 1/k ][[1]], {k, 1, n}]]; Array[a, 50] (* Jean-François Alcover, Sep 26 2018 *)
PROG
(PARI) farey(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k); ); ); vecsort(Set(vf)); }
a(n) = my(row = farey(n)); sum(k=1, n, eulerphi(k)*vecsearch(row, 1/k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 27 2014
STATUS
approved