login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244398
Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 2.
2
1, 2, 5, 10, 22, 45, 97, 206, 450, 982, 2178, 4849, 10904, 24630, 56010, 127911, 293546, 676156, 1563371, 3626148, 8436378, 19680276, 46026617, 107890608, 253450710, 596572386, 1406818758, 3323236237, 7862958390, 18632325318, 44214569099, 105061603968
OFFSET
3,2
LINKS
FORMULA
a(n) = A001190(n+1)-1 = A036656(n+1)-1.
a(n) ~ c * d^n / n^(3/2), where d = 2.4832535361726368... = A086317 and c = 0.7916031835775118... = A086318. - Vaclav Kotesovec, Jun 27 2014
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
a:= n-> b(n-1$2, 2$2) -`if`(n=0, 0, 1):
seq(a(n), n=3..40);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]] // FullSimplify]; a[n_] := b[n-1, n-1, 2, 2] - If[n == 0, 0, 1]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=2 of A244372.
Sequence in context: A045621 A026655 A336484 * A100938 A018004 A124329
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 27 2014
STATUS
approved