login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080838
Orchard crossing number of complete bipartite graph K_{1,n}.
3
0, 0, 0, 2, 5, 12, 21, 36, 54, 80, 110, 150, 195, 252, 315, 392, 476, 576, 684, 810, 945, 1100, 1265, 1452, 1650, 1872, 2106, 2366, 2639, 2940, 3255, 3600, 3960, 4352, 4760, 5202, 5661, 6156, 6669, 7220, 7790, 8400, 9030, 9702, 10395, 11132, 11891
OFFSET
1,4
COMMENTS
Also the minimum number of transitive triples in a tournament on n nodes, i.e., a(n) = C(n,3) - A006918(n-2). - Leen Droogendijk, Nov 10 2014
a(n) = the number of binary strings of length n+1 with exactly one pair of adjacent 0's and exactly two pairs of adjacent 1's. - Jeremy Dover, Jul 07 2016
LINKS
D. Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003.
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
FORMULA
a(n) = (n/16) * (2*n^2 - 8*n + 7 + (-1)^n).
G.f.: (x^5 + 2*x^4) / (1-x)^4 / (1+x)^2.
For n odd, a(n) = A060423(n). - Gerald McGarvey, Sep 14 2008
MATHEMATICA
CoefficientList[Series[(x^4 + 2 x^3) / (1 - x)^4 / (1 + x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 17 2013 *)
Table[n/16*(2 n^2 - 8 n + 7 + (-1)^n), {n, 47}] (* Michael De Vlieger, Aug 01 2016 *)
PROG
(PARI) for(n=1, 100, print1(if(n%2, n*(n-1)*(n-3)/8, n*(n-2)^2/8)", "))
(Magma) [n/16*(2*n^2 - 8*n + 7 + (-1)^n): n in [1..50]]; // Vincenzo Librandi, May 17 2013
CROSSREFS
Third column of A274228. - Jeremy Dover, Jul 07 2016
Essentially partial sums of A211539.
Sequence in context: A327065 A307605 A079648 * A244396 A182993 A238741
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Mar 28 2003
STATUS
approved