OFFSET
0,6
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Léo Ducas, Kissing Number of Craig's Lattice and Spherical Decoding, Bachelor's seminar AGM Spring 2025, Leiden Univ. (Netherlands, 2024). See p. 2.
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
a(n) = n*(n-1)*(n-3)/8 when n odd; n*(n-2)*(n-4)/8 when n even.
G.f.: x^5*(x+5)/((1-x)(1-x^2)^3). - Michael Somos, Jan 30 2004
For n odd, a(n) = A080838(n). - Gerald McGarvey, Sep 14 2008
a(n) = n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32. - Wesley Ivan Hurt, Dec 31 2013
E.g.f.: x*((x - 3)*x*cosh(x) + (x^2 - x + 3)*sinh(x))/8. - Stefano Spezia, May 28 2022
MAPLE
A060423:=n->n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32; seq(A060423(n), n=0..100); # Wesley Ivan Hurt, Dec 31 2013
MATHEMATICA
Table[n(2n-3-(-1)^n)(2n-7-(-1)^n)/32, {n, 0, 100}] (* Wesley Ivan Hurt, Dec 31 2013 *)
Table[If[EvenQ[n], (n(n-2)(n-4))/8, (n(n-1)(n-3))/8], {n, 0, 50}] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(PARI) a(n)=polcoeff(x^5*(5+x)/(1-x)/(1-x^2)^3+x*O(x^n), n)
(Magma) [n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32 : n in [0..60]]; // Wesley Ivan Hurt, Apr 14 2017
CROSSREFS
KEYWORD
easy,nice,nonn,changed
AUTHOR
Sen-Peng Eu, Apr 05 2001
STATUS
approved