login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060423
Number of obtuse triangles made from vertices of a regular n-gon.
2
0, 0, 0, 0, 0, 5, 6, 21, 24, 54, 60, 110, 120, 195, 210, 315, 336, 476, 504, 684, 720, 945, 990, 1265, 1320, 1650, 1716, 2106, 2184, 2639, 2730, 3255, 3360, 3960, 4080, 4760, 4896, 5661, 5814, 6669, 6840, 7790, 7980, 9030, 9240, 10395, 10626
OFFSET
0,6
LINKS
Léo Ducas, Kissing Number of Craig's Lattice and Spherical Decoding, Bachelor's seminar AGM Spring 2025, Leiden Univ. (Netherlands, 2024). See p. 2.
FORMULA
a(n) = n*(n-1)*(n-3)/8 when n odd; n*(n-2)*(n-4)/8 when n even.
G.f.: x^5*(x+5)/((1-x)(1-x^2)^3). - Michael Somos, Jan 30 2004
For n odd, a(n) = A080838(n). - Gerald McGarvey, Sep 14 2008
a(n) = n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32. - Wesley Ivan Hurt, Dec 31 2013
E.g.f.: x*((x - 3)*x*cosh(x) + (x^2 - x + 3)*sinh(x))/8. - Stefano Spezia, May 28 2022
MAPLE
A060423:=n->n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32; seq(A060423(n), n=0..100); # Wesley Ivan Hurt, Dec 31 2013
MATHEMATICA
Table[n(2n-3-(-1)^n)(2n-7-(-1)^n)/32, {n, 0, 100}] (* Wesley Ivan Hurt, Dec 31 2013 *)
Table[If[EvenQ[n], (n(n-2)(n-4))/8, (n(n-1)(n-3))/8], {n, 0, 50}] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(PARI) a(n)=polcoeff(x^5*(5+x)/(1-x)/(1-x^2)^3+x*O(x^n), n)
(Magma) [n*(2*n-3-(-1)^n)*(2*n-7-(-1)^n)/32 : n in [0..60]]; // Wesley Ivan Hurt, Apr 14 2017
CROSSREFS
KEYWORD
easy,nice,nonn,changed
AUTHOR
Sen-Peng Eu, Apr 05 2001
STATUS
approved