|
|
A060421
|
|
Numbers n such that the first n digits of the decimal expansion of Pi form a prime.
|
|
13
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The Brown link states that in 2001 Ed T. Prothro reported discovering that 16208 gives a probable prime and that Prothro verified that all values for 500 through 16207 digits of Pi are composites. - Rick L. Shepherd, Sep 10 2002
The corresponding primes are in A005042. - Alexander R. Povolotsky, Dec 17 2007
|
|
LINKS
|
Table of n, a(n) for n=1..8.
K. S. Brown, Primes in the Decimal Expansion of Pi [Broken link?]
K. S. Brown, Primes in the Decimal Expansion of Pi [Cached copy]
Prime Curios, 314159
Prime Curios, 31415...36307 (16208-digits)
Eric Weisstein's World of Mathematics, Constant Primes
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Pi Digits
Eric Weisstein's World of Mathematics, Pi-Prime
|
|
EXAMPLE
|
3 is prime, so a(1) = 1; 31 is prime, so a(2) = 2; 314159 is prime, so a(3) = 6; ...
|
|
MATHEMATICA
|
Do[If[PrimeQ[FromDigits[RealDigits[N[Pi, n + 10], 10, n][[1]]]], Print[n]], {n, 1, 9016} ]
|
|
CROSSREFS
|
Cf. A000796 (Pi), A005042, A007523, A047658.
Primes in other constants: A064118 (e), A065815 (gamma), A064119 (phi), A118328 (Catalan's constant), A115377 (sqrt(2)), A119344 (sqrt(3)), A228226 (log 2), A228240 (log 10), A119334 (zeta(3)), A122422 (Soldner's constant), A118420 (Glaisher-Kinkelin constant), A174974 (Golomb-Dickman constant), A118327 (Khinchin's constant).
Sequence in context: A005530 A072191 A118324 * A054970 A211348 A295912
Adjacent sequences: A060418 A060419 A060420 * A060422 A060423 A060424
|
|
KEYWORD
|
hard,nonn,base
|
|
AUTHOR
|
Michel ten Voorde, Apr 05 2001
|
|
EXTENSIONS
|
a(6) = 47577 from Eric W. Weisstein, Apr 01 2006
a(7) = 78073 from Eric W. Weisstein, Jul 13 2006
a(8) = 613373 from Adrian Bondrescu, May 29 2016
|
|
STATUS
|
approved
|
|
|
|