login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060426
a(n) is the number of degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n that appear only once.
2
1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 4, 4, 5, 5, 4, 6, 8, 8, 6, 7, 10, 11, 11, 15, 15, 16, 18, 21, 22, 23, 29, 33, 31, 31, 39, 43, 44, 52, 51, 58, 64, 71, 66, 82, 88, 96, 93, 103, 115, 128, 143, 150, 156, 160, 173, 199, 202, 202, 242, 263, 269, 293, 308
OFFSET
1,8
COMMENTS
Bounded above by A000700(n). - Eric M. Schmidt, Apr 29 2013
EXAMPLE
a(6) = 1 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and the only number that appears once is 16.
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
a[n_] := a[n] = If[n == 1, 1, Count[Tally[g[n, n, {}]], {_, 1}] ];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
PROG
(Sage)
def A060426(n) :
mult = {}
for P in Partitions(n) :
dim = P.dimension()
mult[dim] = mult.get(dim, 0) + 1
return len([m for m in iter(mult) if mult[m]==1])
# Eric M. Schmidt, Apr 29 2013
CROSSREFS
Cf. A059867, A060368, A060369, A060437, A061569, A089248. [From M. F. Hasler, Jun 14 2009]
Sequence in context: A103273 A289120 A025066 * A260412 A360566 A283451
KEYWORD
nonn
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 05 2001
EXTENSIONS
More terms from Eric M. Schmidt, Apr 29 2013
STATUS
approved