login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260412
Expansion of psi(x^2) * psi(x^3) / f(-x^2, -x^10) in powers of x where psi(), f(,) are Ramanujan theta functions.
2
1, 0, 2, 1, 2, 2, 3, 2, 3, 4, 4, 5, 7, 6, 9, 10, 11, 12, 13, 15, 17, 19, 21, 24, 28, 30, 35, 37, 41, 47, 52, 56, 62, 69, 75, 83, 92, 99, 110, 121, 131, 143, 157, 170, 186, 203, 219, 239, 260, 281, 307, 332, 359, 389, 421, 453, 491, 530, 570, 617, 665, 714, 770
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/24) * eta(q^4)^3 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3) * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 2, 1, -1, 0, 0, 0, -1, 1, 2, 0, -1, ...].
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 2*x^7 + 3*x^8 + 4*x^9 + ...
G.f. = 1/q + 2*q^47 + q^71 + 2*q^95 + 2*q^119 + 3*q^143 + 2*q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (4 x^(5/8) QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12]), {x, 0, n}];
nmax = 50; CoefficientList[Series[Product[(1-x^(4*k))^3 * (1-x^(6*k))^3 / ((1-x^(2*k))^2 * (1-x^(3*k)) * (1-x^(12*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^3 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^2), n))};
CROSSREFS
Sequence in context: A289120 A025066 A060426 * A360566 A283451 A372970
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 24 2015
STATUS
approved