login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Orchard crossing number of complete bipartite graph K_{1,n}.
3

%I #56 Sep 19 2024 09:17:18

%S 0,0,0,2,5,12,21,36,54,80,110,150,195,252,315,392,476,576,684,810,945,

%T 1100,1265,1452,1650,1872,2106,2366,2639,2940,3255,3600,3960,4352,

%U 4760,5202,5661,6156,6669,7220,7790,8400,9030,9702,10395,11132,11891

%N Orchard crossing number of complete bipartite graph K_{1,n}.

%C Also the minimum number of transitive triples in a tournament on n nodes, i.e., a(n) = C(n,3) - A006918(n-2). - _Leen Droogendijk_, Nov 10 2014

%C a(n) = the number of binary strings of length n+1 with exactly one pair of adjacent 0's and exactly two pairs of adjacent 1's. - _Jeremy Dover_, Jul 07 2016

%H Vincenzo Librandi, <a href="/A080838/b080838.txt">Table of n, a(n) for n = 1..1000</a>

%H D. Garber, <a href="http://arXiv.org/abs/math.CO/0303317">The Orchard crossing number of an abstract graph</a>, arXiv:math/0303317 [math.CO], 2003.

%H M. Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv 1301.4550 [math.CO], 2013.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -4, 1, 2, -1).

%F a(n) = (n/16) * (2*n^2 - 8*n + 7 + (-1)^n).

%F G.f.: (x^5 + 2*x^4) / (1-x)^4 / (1+x)^2.

%F For n odd, a(n) = A060423(n). - _Gerald McGarvey_, Sep 14 2008

%t CoefficientList[Series[(x^4 + 2 x^3) / (1 - x)^4 / (1 + x)^2, {x, 0, 40}], x] (* _Vincenzo Librandi_, May 17 2013 *)

%t Table[n/16*(2 n^2 - 8 n + 7 + (-1)^n), {n, 47}] (* _Michael De Vlieger_, Aug 01 2016 *)

%o (PARI) for(n=1,100,print1(if(n%2,n*(n-1)*(n-3)/8,n*(n-2)^2/8)","))

%o (Magma) [n/16*(2*n^2 - 8*n + 7 + (-1)^n): n in [1..50]]; // _Vincenzo Librandi_, May 17 2013

%Y Third column of A274228. - _Jeremy Dover_, Jul 07 2016

%Y Essentially partial sums of A211539.

%K nonn,easy

%O 1,4

%A _Ralf Stephan_, Mar 28 2003