login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258602
a(n) is the index m such that A069492(m) = prime(n)^5.
8
2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
OFFSET
1,1
COMMENTS
A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).
LINKS
EXAMPLE
. n | p | a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
. 1 | 2 | 2 | 32
. 2 | 3 | 5 | 243
. 3 | 5 | 12 | 3125
. 4 | 7 | 20 | 16807
. 5 | 11 | 37 | 161051
. 6 | 13 | 45 | 371293
. 7 | 17 | 68 | 1419857
. 8 | 19 | 82 | 2476099
. 9 | 23 | 106 | 6436343
. 10 | 29 | 142 | 20511149
. 11 | 31 | 154 | 28629151
. 12 | 37 | 196 | 69343957
. 13 | 41 | 219 | 115856201
. 14 | 43 | 234 | 147008443
. 15 | 47 | 260 | 229345007
. 16 | 53 | 305 | 418195493
. 17 | 59 | 342 | 714924299
. 18 | 61 | 360 | 844596301
. 19 | 67 | 407 | 1350125107
. 20 | 71 | 434 | 1804229351
. 21 | 73 | 451 | 2073071593
. 22 | 79 | 496 | 3077056399
. 23 | 83 | 528 | 3939040643
. 24 | 89 | 573 | 5584059449
. 25 | 97 | 635 | 8587340257 .
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
(Python)
from math import gcd
from sympy import prime, integer_nthroot, factorint
def A258602(n):
c, m = 0, prime(n)**5
for t in range(1, integer_nthroot(m, 9)[0]+1):
if all(d<=1 for d in factorint(t).values()):
for u in range(1, integer_nthroot(s:=m//t**9, 8)[0]+1):
if gcd(t, u)==1 and all(d<=1 for d in factorint(u).values()):
for w in range(1, integer_nthroot(a:=s//u**8, 7)[0]+1):
if gcd(u, w)==1 and gcd(t, w)==1 and all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=a//w**7, 6)[0]+1):
if gcd(w, y)==1 and gcd(u, y)==1 and gcd(t, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**6, 5)[0]
return c # Chai Wah Wu, Sep 10 2024
(PARI) \\ Gen(limit, k) defined in A036967.
a(n)=#Gen(prime(n)^5, 5) \\ Andrew Howroyd, Sep 10 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 06 2015
EXTENSIONS
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
STATUS
approved