login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258599
a(n) is the index m such that A001694(m) = prime(n)^2.
8
2, 4, 6, 10, 16, 20, 28, 31, 39, 48, 51, 65, 71, 75, 84, 94, 107, 110, 120, 129, 133, 145, 152, 163, 180, 187, 191, 199, 202, 212, 238, 246, 258, 261, 282, 286, 297, 309, 319, 330, 342, 344, 366, 372, 377, 382, 407, 431, 440, 443, 450, 463, 468, 487, 498
OFFSET
1,1
LINKS
FORMULA
A001694(a(n)) = A001248(n) = prime(n)^2.
A001694(m) mod prime(n) > 0 for m < a(n).
Also smallest number m such that A258567(m) = prime(n):
A258567(a(n)) = A000040(n) and A258567(m) != A000040(n) for m < a(n).
EXAMPLE
. n | p | a(n) | A001694(a(n)) = A001248(n) = p^2
. ----+----+-------+---------------------------------
. 1 | 2 | 2 | 4
. 2 | 3 | 4 | 9
. 3 | 5 | 6 | 25
. 4 | 7 | 10 | 49
. 5 | 11 | 16 | 121
. 6 | 13 | 20 | 169
. 7 | 17 | 28 | 289
. 8 | 19 | 31 | 361
. 9 | 23 | 39 | 529
. 10 | 29 | 48 | 841
. 11 | 31 | 51 | 961
. 12 | 37 | 65 | 1369
. 13 | 41 | 71 | 1681
. 14 | 43 | 75 | 1849
. 15 | 47 | 84 | 2209
. 16 | 53 | 94 | 2809
. 17 | 59 | 107 | 3481
. 18 | 61 | 110 | 3721
. 19 | 67 | 120 | 4489
. 20 | 71 | 129 | 5041
. 21 | 73 | 133 | 5329
. 22 | 79 | 145 | 6241
. 23 | 83 | 152 | 6889
. 24 | 89 | 163 | 7921
. 25 | 97 | 180 | 9409 .
MATHEMATICA
With[{m = 60}, c = Select[Range[Prime[m]^2], Min[FactorInteger[#][[;; , 2]]] > 1 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^2)]] (* Amiram Eldar, Feb 07 2023 *)
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258599 = (+ 1) . fromJust . (`elemIndex` a258567_list) . a000040
(Python)
from math import isqrt
from sympy import prime, integer_nthroot, factorint
def A258599(n):
m = prime(n)**2
return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # Chai Wah Wu, Sep 10 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 06 2015
STATUS
approved