login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258597
a(n) = 13*3^n.
1
13, 39, 117, 351, 1053, 3159, 9477, 28431, 85293, 255879, 767637, 2302911, 6908733, 20726199, 62178597, 186535791, 559607373, 1678822119, 5036466357, 15109399071, 45328197213, 135984591639, 407953774917, 1223861324751, 3671583974253, 11014751922759
OFFSET
0,1
COMMENTS
Also maximum leaf number of the (n+3)-Apollonian network for n >= 0. - Eric W. Weisstein, Jan 17 2018
LINKS
Eric Weisstein's World of Mathematics, Apollonian Network
Eric Weisstein's World of Mathematics, Maximum Leaf Number
FORMULA
G.f.: 13/(1-3*x).
a(n) = 3*a(n-1).
a(n) = 13*A000244(n).
E.g.f.: 13*exp(3*x). - Elmo R. Oliveira, Aug 16 2024
MATHEMATICA
Table[13 3^n, {n, 0, 30}]
13 3^Range[0, 20] (* Eric W. Weisstein, Jan 17 2018 *)
LinearRecurrence[{3}, {13}, 20] (* Eric W. Weisstein, Jan 17 2018 *)
CoefficientList[Series[13/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 17 2018 *)
PROG
(Magma) [13*3^n: n in [0..30]];
CROSSREFS
Cf. k*3^n: A000244 (k=1,3,9), A008776 (k=2,6), A003946 (k=4), A005030 (k=5), A005032 (k=7), A005051 (k=8), A005052 (k=10), A120354 (k=11), A003946 (k=12), this sequence (k=13), A258598 (k=17), A176413 (k=19).
Sequence in context: A283123 A152741 A168235 * A299816 A041324 A220083
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 05 2015
STATUS
approved