login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005051
a(n) = 8*3^n.
11
8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616, 2259436291848, 6778308875544, 20334926626632
OFFSET
0,1
COMMENTS
For n>=3, a(n-3) is equal to the number of functions f:{1,2,...,n}->{1,2,3} such that for fixed, different x_1, x_2, x_3 in {1,2,...,n} and fixed y_1, y_2, y_3 in {1,2,3} we have f(x_i)<>y_i, (i=1,2,3). - Milan Janjic, May 13 2007
FORMULA
a(n) = 3*a(n-1). G.f.: 8/(1-3*x). - Colin Barker, Jul 02 2012
From Elmo R. Oliveira, Aug 16 2024: (Start)
E.g.f.: 8*exp(3*x).
a(n) = 8*A000244(n) = 4*A008776(n). (End)
MATHEMATICA
8*3^Range[0, 60] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
PROG
(Magma) [8*3^n: n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
(PARI) a(n)=8*3^n \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
Sequence in context: A343546 A199911 A083583 * A303402 A078158 A221906
KEYWORD
nonn,easy
STATUS
approved