login
A258601
a(n) is the index m such that A036967(m) = prime(n)^4.
8
2, 5, 10, 16, 28, 37, 55, 61, 80, 105, 113, 142, 163, 170, 190, 219, 249, 260, 286, 310, 318, 352, 374, 407, 448, 472, 482, 505, 511, 536, 614, 634, 672, 682, 740, 754, 783, 821, 842, 878, 916, 924, 984, 996, 1015, 1032, 1103, 1171, 1201, 1213, 1233, 1270, 1286, 1343, 1379
OFFSET
1,1
COMMENTS
A036967(a(n)) = A030514(n) = prime(n)^4;
A036967(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258569(m) = prime(n):
A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n).
LINKS
EXAMPLE
. n | p | a(n) | A036967(a(n)) = A030514(n) = p^4
. ----+----+-------+---------------------------------
. 1 | 2 | 2 | 16
. 2 | 3 | 5 | 81
. 3 | 5 | 10 | 625
. 4 | 7 | 16 | 2401
. 5 | 11 | 28 | 14641
. 6 | 13 | 37 | 28561
. 7 | 17 | 55 | 83521
. 8 | 19 | 61 | 130321
. 9 | 23 | 80 | 279841
. 10 | 29 | 105 | 707281
. 11 | 31 | 113 | 923521
. 12 | 37 | 142 | 1874161
. 13 | 41 | 163 | 2825761
. 14 | 43 | 170 | 3418801
. 15 | 47 | 190 | 4879681
. 16 | 53 | 219 | 7890481
. 17 | 59 | 249 | 12117361
. 18 | 61 | 260 | 13845841
. 19 | 67 | 286 | 20151121
. 20 | 71 | 310 | 25411681
. 21 | 73 | 318 | 28398241
. 22 | 79 | 352 | 38950081
. 23 | 83 | 374 | 47458321
. 24 | 89 | 407 | 62742241
. 25 | 97 | 448 | 88529281
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
(Python)
from math import gcd
from sympy import prime, integer_nthroot, factorint
def A258601(n):
c, m = 0, prime(n)**4
for u in range(1, integer_nthroot(m, 7)[0]+1):
if all(d<=1 for d in factorint(u).values()):
for w in range(1, integer_nthroot(a:=m//u**7, 6)[0]+1):
if gcd(w, u)==1 and all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=a//w**6, 5)[0]+1):
if gcd(w, y)==1 and gcd(u, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**5, 4)[0]
return c # Chai Wah Wu, Sep 10 2024
(PARI) \\ Gen(limit, k) defined in A036967.
a(n)=#Gen(prime(n)^4, 4) \\ Andrew Howroyd, Sep 10 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 06 2015
EXTENSIONS
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
STATUS
approved