%I #20 Sep 11 2024 00:33:18
%S 2,5,10,16,28,37,55,61,80,105,113,142,163,170,190,219,249,260,286,310,
%T 318,352,374,407,448,472,482,505,511,536,614,634,672,682,740,754,783,
%U 821,842,878,916,924,984,996,1015,1032,1103,1171,1201,1213,1233,1270,1286,1343,1379
%N a(n) is the index m such that A036967(m) = prime(n)^4.
%C A036967(a(n)) = A030514(n) = prime(n)^4;
%C A036967(m) mod prime(n) > 0 for m < a(n);
%C also smallest number m such that A258569(m) = prime(n):
%C A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n).
%H Andrew Howroyd, <a href="/A258601/b258601.txt">Table of n, a(n) for n = 1..1000</a>
%e . n | p | a(n) | A036967(a(n)) = A030514(n) = p^4
%e . ----+----+-------+---------------------------------
%e . 1 | 2 | 2 | 16
%e . 2 | 3 | 5 | 81
%e . 3 | 5 | 10 | 625
%e . 4 | 7 | 16 | 2401
%e . 5 | 11 | 28 | 14641
%e . 6 | 13 | 37 | 28561
%e . 7 | 17 | 55 | 83521
%e . 8 | 19 | 61 | 130321
%e . 9 | 23 | 80 | 279841
%e . 10 | 29 | 105 | 707281
%e . 11 | 31 | 113 | 923521
%e . 12 | 37 | 142 | 1874161
%e . 13 | 41 | 163 | 2825761
%e . 14 | 43 | 170 | 3418801
%e . 15 | 47 | 190 | 4879681
%e . 16 | 53 | 219 | 7890481
%e . 17 | 59 | 249 | 12117361
%e . 18 | 61 | 260 | 13845841
%e . 19 | 67 | 286 | 20151121
%e . 20 | 71 | 310 | 25411681
%e . 21 | 73 | 318 | 28398241
%e . 22 | 79 | 352 | 38950081
%e . 23 | 83 | 374 | 47458321
%e . 24 | 89 | 407 | 62742241
%e . 25 | 97 | 448 | 88529281
%o (Haskell)
%o import Data.List (elemIndex); import Data.Maybe (fromJust)
%o a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
%o (Python)
%o from math import gcd
%o from sympy import prime, integer_nthroot, factorint
%o def A258601(n):
%o c, m = 0, prime(n)**4
%o for u in range(1,integer_nthroot(m,7)[0]+1):
%o if all(d<=1 for d in factorint(u).values()):
%o for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1):
%o if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
%o for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
%o if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
%o c += integer_nthroot(z//y**5,4)[0]
%o return c # _Chai Wah Wu_, Sep 10 2024
%o (PARI) \\ Gen(limit,k) defined in A036967.
%o a(n)=#Gen(prime(n)^4,4) \\ _Andrew Howroyd_, Sep 10 2024
%Y Cf. A258569, A000040, A030514, A036967, A258599, A258600, A258602, A258603.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jun 06 2015
%E a(11) onwards corrected by _Chai Wah Wu_ and _Andrew Howroyd_, Sep 10 2024