login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the index m such that A001694(m) = prime(n)^2.
8

%I #17 Sep 10 2024 14:21:18

%S 2,4,6,10,16,20,28,31,39,48,51,65,71,75,84,94,107,110,120,129,133,145,

%T 152,163,180,187,191,199,202,212,238,246,258,261,282,286,297,309,319,

%U 330,342,344,366,372,377,382,407,431,440,443,450,463,468,487,498

%N a(n) is the index m such that A001694(m) = prime(n)^2.

%H Reinhard Zumkeller, <a href="/A258599/b258599.txt">Table of n, a(n) for n = 1..1000</a>

%F A001694(a(n)) = A001248(n) = prime(n)^2.

%F A001694(m) mod prime(n) > 0 for m < a(n).

%F Also smallest number m such that A258567(m) = prime(n):

%F A258567(a(n)) = A000040(n) and A258567(m) != A000040(n) for m < a(n).

%e . n | p | a(n) | A001694(a(n)) = A001248(n) = p^2

%e . ----+----+-------+---------------------------------

%e . 1 | 2 | 2 | 4

%e . 2 | 3 | 4 | 9

%e . 3 | 5 | 6 | 25

%e . 4 | 7 | 10 | 49

%e . 5 | 11 | 16 | 121

%e . 6 | 13 | 20 | 169

%e . 7 | 17 | 28 | 289

%e . 8 | 19 | 31 | 361

%e . 9 | 23 | 39 | 529

%e . 10 | 29 | 48 | 841

%e . 11 | 31 | 51 | 961

%e . 12 | 37 | 65 | 1369

%e . 13 | 41 | 71 | 1681

%e . 14 | 43 | 75 | 1849

%e . 15 | 47 | 84 | 2209

%e . 16 | 53 | 94 | 2809

%e . 17 | 59 | 107 | 3481

%e . 18 | 61 | 110 | 3721

%e . 19 | 67 | 120 | 4489

%e . 20 | 71 | 129 | 5041

%e . 21 | 73 | 133 | 5329

%e . 22 | 79 | 145 | 6241

%e . 23 | 83 | 152 | 6889

%e . 24 | 89 | 163 | 7921

%e . 25 | 97 | 180 | 9409 .

%t With[{m = 60}, c = Select[Range[Prime[m]^2], Min[FactorInteger[#][[;; , 2]]] > 1 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^2)]] (* _Amiram Eldar_, Feb 07 2023 *)

%o (Haskell)

%o import Data.List (elemIndex); import Data.Maybe (fromJust)

%o a258599 = (+ 1) . fromJust . (`elemIndex` a258567_list) . a000040

%o (Python)

%o from math import isqrt

%o from sympy import prime, integer_nthroot, factorint

%o def A258599(n):

%o m = prime(n)**2

%o return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # _Chai Wah Wu_, Sep 10 2024

%Y Cf. A258567, A000040, A001248, A001694, A258600, A258601, A258602, A258603.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jun 06 2015