OFFSET
1,1
FORMULA
G.f.: Sum_{k>=1} phi(k) * prime(k) * x^k / (1 - x^k).
a(n) = Sum_{k=1..n} prime(n/gcd(n,k)).
a(n) = Sum_{k=1..n} prime(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
MATHEMATICA
Table[Sum[EulerPhi[d] Prime[d], {d, Divisors[n]}], {n, 1, 50}]
Table[Sum[Prime[n/GCD[n, k]], {k, 1, n}], {n, 1, 50}]
PROG
(PARI) a(n) = sumdiv(n, d, prime(d)*eulerphi(d)); \\ Michel Marcus, Mar 27 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 26 2020
STATUS
approved