login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305421
GF(2)[X] factorization prime shift towards larger terms.
10
1, 3, 7, 5, 21, 9, 11, 15, 49, 63, 13, 27, 19, 29, 107, 17, 273, 83, 25, 65, 69, 23, 121, 45, 31, 53, 151, 39, 35, 189, 37, 51, 251, 819, 173, 245, 41, 43, 233, 195, 47, 207, 93, 57, 997, 139, 55, 119, 127, 33, 1911, 95, 79, 441, 59, 105, 367, 101, 61, 455, 67, 111, 475, 85, 1281, 269, 73, 1365, 81, 503, 457, 287, 87, 123, 1549, 125, 179, 315
OFFSET
1,2
COMMENTS
Permutation of the odd numbers, A005408.
Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as A014580(i) x A014580(j) x ... x A014580(k), 1 <= i <= j <= ... <= k, a(n) = A014580(1+i) x A014580(1+j) x ... x A014580(1+k).
FORMULA
For all n >= 1:
A305422(a(n)) = n.
A268389(a(n)) = A007814(n).
a(A000079(n)) = A001317(n).
EXAMPLE
For n = 12, which by its binary representation '1100' corresponds with (0,1)-polynomial x^3 + x^2, which over GF(2)[X] is factored as (x)(x)(x+1), i.e., 12 = A048720(2,A048720(2,3)) = A048720(A014580(1), A048720(A014580(1),A014580(2))), we then form a(12) as A048720(A014580(2), A048720(A014580(2),A014580(3))) = A048720(3,A048720(3,7)) = 27. Note that x, x+1 and x^2 + x + 1 are the three smallest irreducible (0,1)-polynomials when factored over GF(2)[X], and their binary representations 2, 3 and 7 are the three initial terms of A014580.
PROG
(PARI)
A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
A305420(n) = { my(k=1+n); while(!A091225(k), k++); (k); };
A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))), x, 2)); for(i=1, #f~, f[i, 1] = Pol(binary(A305420(f[i, 1])))); fromdigits(Vec(factorback(f))%2, 2); };
CROSSREFS
Cf. A305422 (a left inverse).
Cf. also A003961, A300841.
Sequence in context: A115765 A282598 A269369 * A354544 A112071 A231609
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 07 2018
STATUS
approved