The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206074 n-th irreducible polynomial over Q (with coefficients 0 or 1) evaluated at x=2. 34
 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Is every prime present? Yes, see the Filaseta reference. - Thomas Ordowski, Feb 19 2014 Corresponding evaluation at x=10 is A206073. - Michael Somos, Feb 26 2014 LINKS Antti Karttunen, Table of n, a(n) for n = 1..21692 John Brillhart, Michael Filaseta, Andrew Odlyzko, On an irreducibility theorem of A. Cohn, Canad. J. Math. 33(1981), pp. 1055-1059. Michael Filaseta, A further generalization of an irreducibility theorem of A. Cohn, Canad J. Math. 34 (1982), pp. 1390-1395. FORMULA Other identities and observations. For all n >= 1: A255574(a(n)) = n. EXAMPLE (See the example at A206073.) MATHEMATICA t = Table[IntegerDigits[n, 2], {n, 1, 850}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n, x], {n, 1, 15}] u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], AppendTo[u, n]], {n, 300}]; u                          (* A206074 *) Complement[Range[200], u]  (* A205783 *) b[n_] := FromDigits[IntegerDigits[u, 2][[n]]] Table[b[n], {n, 1, 40}]    (* A206073 *) PROG (PARI) for(n=2, 10^3, if( polisirreducible( Pol(binary(n)) ), print1(n, ", ") ) ); \\ Joerg Arndt, Feb 19 2014 CROSSREFS Cf. A206073, A205783 (complement), A206075 (nonprime terms), A014580 (irreducible over GF(2), a subsequence of this one), A000040 (primes, also a subsequence), A260427 (terms that are reducible over GF(2)). Cf. A255574 (left inverse). Cf. also permutations A260421 - A260426. Disjoint union of A257688 (without 1) and A260428. a(n) differs from A186891(n+1) for the first time at n=21, where a(21) = 67, while A186891(22) = 65, a term missing from here. There are several other sequences that do not diverge until after approx. the twentieth term from this one (see the context-links). Sequence in context: A335284 A308966 A186891 * A325559 A257688 A257689 Adjacent sequences:  A206071 A206072 A206073 * A206075 A206076 A206077 KEYWORD nonn AUTHOR Clark Kimberling, Feb 03 2012 EXTENSIONS Clarified name, added more terms, Joerg Arndt, Feb 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 06:38 EDT 2021. Contains 344981 sequences. (Running on oeis4.)