login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260428
Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).
4
69, 77, 81, 121, 169, 205, 209, 261, 265, 275, 289, 295, 305, 321, 323, 327, 329, 339, 377, 405, 407, 437, 453, 473, 475, 481, 493, 517, 533, 551, 553, 559, 565, 575, 581, 583, 595, 625, 649, 667, 671, 689, 703, 707, 737, 747, 749, 755, 763, 767, 779, 781, 785, 805, 815, 833, 835, 851, 855, 861, 869, 893, 905
OFFSET
1,1
LINKS
MAPLE
f:= proc(n) local L, p, x;
if isprime(n) then return false fi;
L:= convert(n, base, 2);
p:= add(L[i]*x^(i-1), i=1..nops(L));
irreduc(p) and not (Irreduc(p) mod 2);
end proc:
select(f, [$2..10000]); # Robert Israel, Jul 27 2015
MATHEMATICA
okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]];
Select[Range[1000], okQ] (* Jean-François Alcover, Feb 06 2023 *)
PROG
(PARI)
isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n));
n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n)));
CROSSREFS
Intersection of A002808 and A260427.
Intersection of A091212 and A206074.
Intersection of A091242 and A206075.
Complement of A257688 in A206074.
Sequence in context: A166067 A253437 A325386 * A168477 A264045 A295806
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 26 2015
STATUS
approved