login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260421
a(1) = 1, a(A206074(n)) = 1 + (2*a(n)), a(A205783(1+n)) = 2*a(n), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.
6
1, 3, 7, 2, 15, 6, 5, 14, 4, 30, 31, 12, 13, 10, 28, 8, 11, 60, 29, 62, 24, 26, 9, 20, 61, 56, 16, 22, 63, 120, 25, 58, 124, 48, 52, 18, 27, 40, 122, 112, 21, 32, 57, 44, 126, 240, 17, 50, 116, 248, 96, 104, 23, 36, 121, 54, 80, 244, 59, 224, 125, 42, 64, 114, 88, 252, 49, 480, 53, 34, 19, 100, 41, 232, 496, 192, 123, 208, 113, 46, 33, 72, 45
OFFSET
1,2
FORMULA
If A257000(n) = 1 [when n is one of the terms of A206074] then a(n) = 1 + 2*a(A255574(n)), otherwise a(n) = 2*A260421(A255572(n)).
As a composition of related permutations:
a(n) = A246377(A260424(n)).
a(n) = A246201(A260426(n)).
PROG
(PARI)
allocatemem(123456789);
uplim = 2^20;
v255574 = vector(uplim); A255574 = n -> v255574[n];
A255572 = n -> (n - A255574(n) - 1);
isA206074(n) = polisirreducible(Pol(binary(n)));
v255574[1] = 0; i=0; j=0; n=2; while((n < uplim), v255574[n] = v255574[n-1]+isA206074(n); n++);
A260421(n) = if(1==n, 1, if(isA206074(n), 1 + 2*(A260421(A255574(n))), 2*(A260421(A255572(n)))));
for(n=1, 8192, write("b260421.txt", n, " ", A260421(n)));
CROSSREFS
Inverse: A260422.
Related permutations: A246201, A246377, A260424, A260426.
Sequence in context: A255565 A227351 A246377 * A237427 A378995 A210203
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 25 2015
STATUS
approved