login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260418
Number of ways to write 12*n+5 as 4*x^4 + 4*y^2 + z^2, where x is a nonnegative integer, and y and z are positive integers.
2
1, 2, 2, 2, 1, 3, 2, 4, 3, 2, 3, 2, 5, 2, 3, 3, 2, 4, 3, 3, 3, 2, 5, 2, 3, 3, 2, 6, 3, 4, 3, 5, 6, 3, 3, 5, 3, 5, 4, 2, 5, 4, 7, 3, 2, 7, 4, 6, 2, 2, 4, 3, 8, 4, 1, 2, 4, 8, 6, 2, 5, 2, 7, 4, 4, 3, 4, 5, 2, 4, 5, 6, 4, 3, 2, 5, 2, 7, 4, 5, 5, 2, 5, 3, 6, 5, 4, 7, 3, 4, 3, 5, 9, 3, 4, 3, 5, 11, 4, 5, 5
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 4, 54, 159, 289, 999, 1175, 1404, 16391, 39688.
(ii) All the numbers 24*n+4 (n = 0,1,2,...) can be written as 3*x^4+24*y^2+z^2, where x,y,z are integers with x > 0 and z > 0.
(iii) All the numbers 24*n+13 (n = 0,1,2,...) can be written as 3*x^4+9*y^2+z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+r (n = 0,1,2,...) can be written as a*x^4+b*y^2+c*z^2 with x an integer and y and z positive integers, provided that (r,a,b,c) is among the following quadruples: (5,3,1,1), (5,12,4,1), (7,3,6,1), (10,5,1,1), (11,3,8,3), (11,6,3,2), (17,9,4,1).
See A290491 for a similar conjecture.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(4) = 1 since 12*4+5 = 4*0^4 + 4*1^2 + 7^2.
a(54) = 1 since 12*54+5 = 4*0^4 + 4*11^2 + 13^2.
a(159) = 1 since 12*159+5 = 4*0^4 + 4*4^2 + 43^2.
a(289) = 1 since 12*289+5 = 4*1^4 + 4*19^2 + 45^2.
a(999) = 1 since 12*999+5 = 4*7^4 + 4*21^2 + 25^2.
a(1175) = 1 since 12*1175+5 = 4*3^4 + 4*55^2 + 41^2.
a(1404) = 1 since 12*1404+5 = 4*3^4 + 4*10^2 + 127^2.
a(16391) = 1 since 12*16391+5 = 4*5^4 + 4*207^2 + 151^2.
a(39688) = 1 since 12*39688+5 = 4*5^4 + 4*50^2 + 681^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[12n+5-4x^4-4y^2], r=r+1], {x, 0, ((12n+5)/4)^(1/4)}, {y, 1, Sqrt[(12n+5-4x^4)/4]}]; Print[n, " ", r], {n, 0, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 04 2017
STATUS
approved