login
A210203
Triangle of coefficients of polynomials u(n,x) jointly generated with A210204; see the Formula section.
3
1, 3, 7, 2, 15, 10, 2, 31, 34, 14, 2, 63, 98, 62, 18, 2, 127, 258, 222, 98, 22, 2, 255, 642, 702, 418, 142, 26, 2, 511, 1538, 2046, 1538, 702, 194, 30, 2, 1023, 3586, 5630, 5122, 2942, 1090, 254, 34, 2, 2047, 8194, 14846, 15874, 11006, 5122, 1598, 322
OFFSET
1,2
COMMENTS
Column 1: -1+2^n
Row sums: 3^(n-1)
Alternating row sums: 1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3
7....2
15...10...2
31...34...14...2
First three polynomials u(n,x): 1, 3, 7 + 2x.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x+1)*u[n-1, x]+(x+1)*v[n-1, x]+1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210203 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210204 *)
CROSSREFS
Sequence in context: A260421 A237427 A378995 * A318467 A324713 A245611
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved