login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210203
Triangle of coefficients of polynomials u(n,x) jointly generated with A210204; see the Formula section.
3
1, 3, 7, 2, 15, 10, 2, 31, 34, 14, 2, 63, 98, 62, 18, 2, 127, 258, 222, 98, 22, 2, 255, 642, 702, 418, 142, 26, 2, 511, 1538, 2046, 1538, 702, 194, 30, 2, 1023, 3586, 5630, 5122, 2942, 1090, 254, 34, 2, 2047, 8194, 14846, 15874, 11006, 5122, 1598, 322
OFFSET
1,2
COMMENTS
Column 1: -1+2^n
Row sums: 3^(n-1)
Alternating row sums: 1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3
7....2
15...10...2
31...34...14...2
First three polynomials u(n,x): 1, 3, 7 + 2x.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x+1)*u[n-1, x]+(x+1)*v[n-1, x]+1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210203 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210204 *)
CROSSREFS
Sequence in context: A260421 A237427 A378995 * A318467 A324713 A245611
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved