login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210205
The sum of three consecutive prime numbers, beginning with a(n), is a cube.
3
439, 34603, 1016201, 3696493, 4002991, 6344687, 10221397, 14662309, 16209029, 19925483, 20856907, 22805969, 43441271, 60120691, 60761413, 62056457, 62710787, 87791567, 96268243, 125977651, 166225747, 170027449
OFFSET
1,1
EXAMPLE
prime(85) + prime(86) + prime(87) = 439 + 443 + 449 = 1331 = 11^3.
MATHEMATICA
t = {}; p = 2; q = 3; Do[r = NextPrime[q]; If[IntegerQ[(p + q + r)^(1/3)], AppendTo[t, p]; Print[p]]; p = q; q = r, {1000000}]; t (* T. D. Noe, Mar 24 2012 *)
Select[Partition[Prime[Range[9505000]], 3, 1], IntegerQ[Surd[Total[#], 3]]&][[All, 1]] (* Harvey P. Dale, May 22 2020 *)
PROG
(Python)
from __future__ import division
from sympy import nextprime, prevprime
A210205_list = []
for i in range(3, 10**6):
n = i**3
p2 = prevprime(n//3)
p1, p3 = prevprime(p2), nextprime(p2)
q = p1+p2+p3
while q <= n:
if q == n:
A210205_list.append(p1)
p1, p2, p3 = p2, p3, nextprime(p3)
q = p1+p2+p3 # Chai Wah Wu, Dec 31 2015
CROSSREFS
Cf. A061308.
Sequence in context: A157737 A061328 A177489 * A092048 A296905 A345555
KEYWORD
nonn
AUTHOR
Pablo Martínez, Mar 18 2012
EXTENSIONS
Extended by T. D. Noe, Mar 24 2012
STATUS
approved