The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345555 Numbers that are the sum of ten cubes in seven or more ways. 7
 440, 473, 499, 506, 525, 532, 534, 567, 571, 584, 588, 597, 599, 604, 606, 623, 625, 627, 630, 632, 637, 639, 640, 644, 651, 656, 658, 660, 662, 663, 665, 669, 670, 673, 677, 680, 682, 684, 688, 689, 691, 693, 695, 696, 697, 699, 701, 702, 704, 707, 708, 714 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Sean A. Irvine, Table of n, a(n) for n = 1..10000 EXAMPLE 473 is a term because 473 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 7]) for x in range(len(rets)): print(rets[x]) CROSSREFS Cf. A345546, A345554, A345556, A345600, A345809, A346806. Sequence in context: A210205 A092048 A296905 * A345809 A279812 A279950 Adjacent sequences: A345552 A345553 A345554 * A345556 A345557 A345558 KEYWORD nonn AUTHOR David Consiglio, Jr., Jun 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 11:32 EDT 2023. Contains 365531 sequences. (Running on oeis4.)