login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220511
a(n) = n^5 + 5*n + 5^n.
5
1, 11, 67, 383, 1669, 6275, 23431, 94967, 423433, 2012219, 9865675, 48989231, 244389517, 1221074483, 6104053519, 30518337575, 152588939281, 762940873067, 3814699155283, 19073488804319, 95367434840725, 476837162287331, 2384185796169367, 11920928961514583
OFFSET
0,2
FORMULA
a(n) = A000584(n) + A008587(n) + A000351(n).
G.f.: (29*x^6+30*x^5+459*x^4-46*x^3+9*x^2-1) / ((x-1)^6*(5*x-1)). - Colin Barker, May 09 2013
EXAMPLE
a(1) = 1^5 + 5*1 + 5^1 = 11.
a(2) = 2^5 + 5*2 + 5^2 = 67.
MATHEMATICA
Table[n^5 + 5*n + 5^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
LinearRecurrence[{11, -45, 95, -115, 81, -31, 5}, {1, 11, 67, 383, 1669, 6275, 23431}, 30] (* Harvey P. Dale, Jun 03 2024 *)
PROG
(Maxima) makelist(n^5 + 5*n + 5^n, n, 0, 20); /* Martin Ettl, Jan 15 2013 */
(PARI) a(n)=n^5+5*n+5^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Dec 15 2012
STATUS
approved