login
A220511
a(n) = n^5 + 5*n + 5^n.
5
1, 11, 67, 383, 1669, 6275, 23431, 94967, 423433, 2012219, 9865675, 48989231, 244389517, 1221074483, 6104053519, 30518337575, 152588939281, 762940873067, 3814699155283, 19073488804319, 95367434840725, 476837162287331, 2384185796169367, 11920928961514583
OFFSET
0,2
FORMULA
a(n) = A000584(n) + A008587(n) + A000351(n).
G.f.: (29*x^6+30*x^5+459*x^4-46*x^3+9*x^2-1) / ((x-1)^6*(5*x-1)). - Colin Barker, May 09 2013
EXAMPLE
a(1) = 1^5 + 5*1 + 5^1 = 11.
a(2) = 2^5 + 5*2 + 5^2 = 67.
MATHEMATICA
Table[n^5 + 5*n + 5^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
LinearRecurrence[{11, -45, 95, -115, 81, -31, 5}, {1, 11, 67, 383, 1669, 6275, 23431}, 30] (* Harvey P. Dale, Jun 03 2024 *)
PROG
(Maxima) makelist(n^5 + 5*n + 5^n, n, 0, 20); /* Martin Ettl, Jan 15 2013 */
(PARI) a(n)=n^5+5*n+5^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Dec 15 2012
STATUS
approved