login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^5 + 5*n + 5^n.
5

%I #27 Jun 03 2024 18:42:13

%S 1,11,67,383,1669,6275,23431,94967,423433,2012219,9865675,48989231,

%T 244389517,1221074483,6104053519,30518337575,152588939281,

%U 762940873067,3814699155283,19073488804319,95367434840725,476837162287331,2384185796169367,11920928961514583

%N a(n) = n^5 + 5*n + 5^n.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (11,-45,95,-115,81,-31,5).

%F a(n) = A000584(n) + A008587(n) + A000351(n).

%F G.f.: (29*x^6+30*x^5+459*x^4-46*x^3+9*x^2-1) / ((x-1)^6*(5*x-1)). - _Colin Barker_, May 09 2013

%e a(1) = 1^5 + 5*1 + 5^1 = 11.

%e a(2) = 2^5 + 5*2 + 5^2 = 67.

%t Table[n^5 + 5*n + 5^n, {n, 0, 30}] (* _T. D. Noe_, Dec 17 2012 *)

%t LinearRecurrence[{11,-45,95,-115,81,-31,5},{1,11,67,383,1669,6275,23431},30] (* _Harvey P. Dale_, Jun 03 2024 *)

%o (Maxima) makelist(n^5 + 5*n + 5^n,n,0,20); /* _Martin Ettl_, Jan 15 2013 */

%o (PARI) a(n)=n^5+5*n+5^n \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A000351, A000584, A008587, A220425, A220509.

%K nonn,easy

%O 0,2

%A _Jonathan Vos Post_, Dec 15 2012