login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n^3 + 3n + 3^n.
7

%I #19 Sep 08 2022 08:46:04

%S 1,7,23,63,157,383,963,2551,7097,20439,60079,178511,533205,1596559,

%T 4785755,14352327,43050865,129145127,387426375,1162268383,3486792461,

%U 10460362527,31381070323,94143191063,282429550377,847288625143,2541865845983,7625597504751

%N n^3 + 3n + 3^n.

%C This is to A220425 as 3 is to 2.

%C The subsequence of primes begins: 7, 23, 157, 383, 2551, see A220701 for the associated n.

%H Vincenzo Librandi, <a href="/A220509/b220509.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = n^3 + 3*n + 3^n = A000578(n) + A008585(n) + A000244(n).

%F G.f.: (1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3*x)). - _Vincenzo Librandi_, Dec 18 2012

%e a(1) = 1^3 + 3*1 + 3^1 = 7.

%e a(2) = 2^3 + 3*2 + 3^2 = 23.

%t Table[n^3 + 3*n + 3^n, {n, 0, 30}] (* _T. D. Noe_, Dec 17 2012 *)

%t CoefficientList[Series[(1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 18 2012 *)

%o (Maxima) A220509(n):=n^3+3*n+3^n$ makelist(A220509(n),n,0,20); /* _Martin Ettl_, Dec 17 2012 */

%o (Magma) [n^3 + 3*n + 3^n: n in [0..30]]; // _Vincenzo Librandi_, Dec 18 2012

%Y Cf. A000244, A000578, A008585, A220425, A220701.

%K nonn,easy

%O 0,2

%A _Jonathan Vos Post_, Dec 15 2012