The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014829 a(1)=1, a(n) = 6*a(n-1) + n. 5
 1, 8, 51, 310, 1865, 11196, 67183, 403106, 2418645, 14511880, 87071291, 522427758, 3134566561, 18807399380, 112844396295, 677066377786, 4062398266733, 24374389600416, 146246337602515, 877478025615110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. See also Proc. Amer. Math. Soc. 148 (2020), 461-469. Index entries for linear recurrences with constant coefficients, signature (8,-13,6). FORMULA a(n) = (6^(n+1) - 5*n - 6)/25. - Rolf Pleisch, Oct 25 2010 Binomial transform of x*(1+x)/(1-5*x), or A003948 with a leading 0. a(n) = Sum_{k=0..n} (n-k)*6^k = Sum_{k=0..n} k*6^(n-k); a(n) = Sum_{k=0..n} binomial(n+2, k+2)*5^k [Offset 0]. - Paul Barry, Jul 30 2004 From Colin Barker, Jun 03 2020: (Start) G.f.: x / ((1 - x)^2*(1 - 6*x)). a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n>3. (End) MAPLE a:=n->1/5*sum(6^j-1, j=1..n): seq(a(n), n=1..20); # Zerinvary Lajos, Jun 27 2007 MATHEMATICA Join[{a=1, b=8}, Table[c=7*b-6*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *) PROG (MAGMA) [(6^(n+1)-5*n-6)/25: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011 (PARI) Vec(x / ((1 - x)^2*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Jun 03 2020 CROSSREFS Sequence in context: A037697 A037606 A055147 * A048438 A295602 A226199 Adjacent sequences:  A014826 A014827 A014828 * A014830 A014831 A014832 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 17:41 EDT 2021. Contains 346346 sequences. (Running on oeis4.)