login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014829
a(1)=1, a(n) = 6*a(n-1) + n.
6
1, 8, 51, 310, 1865, 11196, 67183, 403106, 2418645, 14511880, 87071291, 522427758, 3134566561, 18807399380, 112844396295, 677066377786, 4062398266733, 24374389600416, 146246337602515, 877478025615110
OFFSET
1,2
LINKS
László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. See also Proc. Amer. Math. Soc. 148 (2020), 461-469.
FORMULA
a(n) = (6^(n+1) - 5*n - 6)/25. - Rolf Pleisch, Oct 25 2010
Binomial transform of x*(1+x)/(1-5*x), or A003948 with a leading 0. a(n) = Sum_{k=0..n} (n-k)*6^k = Sum_{k=0..n} k*6^(n-k); a(n) = Sum_{k=0..n} binomial(n+2, k+2)*5^k [Offset 0]. - Paul Barry, Jul 30 2004
From Colin Barker, Jun 03 2020: (Start)
G.f.: x / ((1 - x)^2*(1 - 6*x)).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n>3.
(End)
MAPLE
a:=n->1/5*sum(6^j-1, j=1..n): seq(a(n), n=1..20); # Zerinvary Lajos, Jun 27 2007
MATHEMATICA
Join[{a=1, b=8}, Table[c=7*b-6*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
nxt[{n_, a_}]:={n+1, 6a+n+1}; NestList[nxt, {1, 1}, 30][[All, 2]] (* Harvey P. Dale, Feb 12 2023 *)
PROG
(Magma) [(6^(n+1)-5*n-6)/25: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
(PARI) Vec(x / ((1 - x)^2*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Jun 03 2020
CROSSREFS
Sequence in context: A037697 A037606 A055147 * A048438 A348312 A295602
KEYWORD
nonn,easy
STATUS
approved