login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(n) = 6*a(n-1) + n.
6

%I #33 Feb 12 2023 10:31:01

%S 1,8,51,310,1865,11196,67183,403106,2418645,14511880,87071291,

%T 522427758,3134566561,18807399380,112844396295,677066377786,

%U 4062398266733,24374389600416,146246337602515,877478025615110

%N a(1)=1, a(n) = 6*a(n-1) + n.

%H Vincenzo Librandi, <a href="/A014829/b014829.txt">Table of n, a(n) for n = 1..1000</a>

%H László Tóth, <a href="https://arxiv.org/abs/2002.06584">On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers</a>, arXiv:2002.06584 [math.NT], 2020. See also <a href="https://doi.org/10.1090/proc/14863">Proc. Amer. Math. Soc.</a> 148 (2020), 461-469.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-13,6).

%F a(n) = (6^(n+1) - 5*n - 6)/25. - _Rolf Pleisch_, Oct 25 2010

%F Binomial transform of x*(1+x)/(1-5*x), or A003948 with a leading 0. a(n) = Sum_{k=0..n} (n-k)*6^k = Sum_{k=0..n} k*6^(n-k); a(n) = Sum_{k=0..n} binomial(n+2, k+2)*5^k [Offset 0]. - _Paul Barry_, Jul 30 2004

%F From _Colin Barker_, Jun 03 2020: (Start)

%F G.f.: x / ((1 - x)^2*(1 - 6*x)).

%F a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n>3.

%F (End)

%p a:=n->1/5*sum(6^j-1,j=1..n): seq(a(n),n=1..20); # _Zerinvary Lajos_, Jun 27 2007

%t Join[{a=1,b=8},Table[c=7*b-6*a+1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 06 2011 *)

%t nxt[{n_,a_}]:={n+1,6a+n+1}; NestList[nxt,{1,1},30][[All,2]] (* _Harvey P. Dale_, Feb 12 2023 *)

%o (Magma) [(6^(n+1)-5*n-6)/25: n in [1..30]]; // _Vincenzo Librandi_, Aug 23 2011

%o (PARI) Vec(x / ((1 - x)^2*(1 - 6*x)) + O(x^25)) \\ _Colin Barker_, Jun 03 2020

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_