login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293311 Rectangular array read by antidiagonals: A(n,k) = number of magic labelings of the graph LOOP X C_n (see comments) having magic sum k, n >= 1, k >= 0. 5
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 7, 1, 6, 15, 23, 26, 11, 1, 7, 21, 42, 70, 57, 18, 1, 8, 28, 69, 155, 197, 129, 29, 1, 9, 36, 106, 301, 533, 571, 289, 47, 1, 10, 45, 154, 532, 1223, 1884, 1640, 650, 76, 1, 11, 55, 215, 876, 2494, 5103, 6604, 4726, 1460, 123, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n.

The generating function for row n of this array was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews, et al., and is needed for the Mathematica program below.

LINKS

Table of n, a(n) for n=1..66.

G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package.

Eric Weisstein's World of Mathematics, Cycle Graph.

Eric Weisstein's World of Mathematics, Graph Loop.

EXAMPLE

Array begins:

.  1   2    3     4      5       6       7        8        9        10

.  1   3    6    10     15      21      28       36       45        55

.  1   4   11    23     42      69     106      154      215       290

.  1   7   26    70    155     301     532      876     1365      2035

.  1  11   57   197    533    1223    2494     4654     8105     13355

.  1  18  129   571   1884    5103   11998    25362    49347     89848

.  1  29  289  1640   6604   21122   57271   137155   298184    599954

.  1  47  650  4726  23219   87677  274132   743724  1806597   4016683

.  1  76 1460 13604  81555  363606 1310974  4029310 10936124  26868719

.  1 123 3281 39175 286555 1508401 6271378 21836366 66220705 179784715

MATHEMATICA

(* Run this first: *)

<< Omega.m;

(* Then run the following in a different cell: *)

nmax = 11; Do[cond = {}; Do[If[n == 1, AppendTo[cond, Subscript[a, 1] + Subscript[a, 2] == Subscript[a, 3]]; Break[], AppendTo[cond, If[j == n, Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 1] == Subscript[a, 2*n + 1], Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 2*j + 1] == Subscript[a, 2*n + 1]]]], {j, n}]; f = OEqSum[Product[Subscript[x, i]^Subscript[a, i], {i, 2*n + 1}], cond, \[Lambda]][[1]] /. {Subscript[x, 2*n + 1] -> z} /. {Subscript[x, _] -> 1}; Do[f = OEqR[f, Subscript[\[Lambda], k]], {k, Length[cond]}]; Do[a293311[n, k] = Coefficient[Series[f, {z, 0, nmax - 1}], z, k], {k, 0, nmax - 1}], {n, nmax}];

(* Array: *)

Grid[Table[a293311[n, k], {n, nmax}, {k, 0, nmax - 1}]]

(* Array antidiagonals flattened (gives this sequence): *)

Flatten[Table[a293311[n, k - n], {k, 11}, {n, k}]]

CROSSREFS

Cf. A293311.

Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310, A293309 (rows 1..10).

Sequence in context: A135278 A034356 A075195 * A126885 A239986 A285548

Adjacent sequences:  A293308 A293309 A293310 * A293312 A293313 A293314

KEYWORD

nonn,tabl

AUTHOR

L. Edson Jeffery, Oct 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 02:16 EDT 2019. Contains 327088 sequences. (Running on oeis4.)