login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368299
a(n) is the number of permutations pi of [n] that avoid {231,321} so that pi^4 avoids 132.
1
0, 1, 2, 4, 7, 13, 23, 41, 72, 127, 223, 392, 688, 1208, 2120, 3721, 6530, 11460, 20111, 35293, 61935, 108689, 190736, 334719, 587391, 1030800, 1808928, 3174448, 5570768, 9776017, 17155714, 30106180, 52832663, 92714861, 162703239, 285524281, 501060184, 879299327
OFFSET
0,3
COMMENTS
Number of compositions of n of the form d_1+d_2+...+d_k=n where d_i is in {1,2,4} if i>1 and d_1 is any positive integer.
LINKS
Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023.
FORMULA
G.f.: x/((1-x)*(1-x-x^2-x^4)).
a(n) = Sum_{m=0..n-1} Sum_{r=0..floor(m/4)} Sum_{j=0..floor((m-4*r)/2)} binomial(m-3*r-j,r)*binomial(m-4*r-j,j).
a(n) = 1+a(n-1)+a(n-2)+a(n-4) where a(0)=0, a(1)=1, a(2)=2, a(3)=4.
a(n) = A274110(n+1) - 1.
MAPLE
a:= proc(n) option remember;
`if`(n<1, 0, 1+add(a(n-j), j=[1, 2, 4]))
end:
seq(a(n), n=0..37); # Alois P. Heinz, Dec 20 2023
MATHEMATICA
LinearRecurrence[{2, 0, -1, 1, -1}, {0, 1, 2, 4, 7}, 38] (* Stefano Spezia, Dec 21 2023 *)
CROSSREFS
Cf. A000071 (d_i in {1,2}), A077868 (d_i in {1,3}), A274110, A303666.
Partial sums of A181532.
Sequence in context: A136299 A208354 A003116 * A303666 A260917 A165648
KEYWORD
nonn,easy
AUTHOR
Kassie Archer, Dec 20 2023
STATUS
approved