login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368302
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal and vertical reflections by a tile that is fixed under horizontal reflections but not vertical reflections.
4
1, 2, 2, 2, 5, 2, 4, 9, 8, 4, 4, 26, 22, 22, 4, 9, 62, 120, 126, 44, 8, 10, 205, 600, 1267, 592, 135, 9, 22, 623, 3936, 14164, 13600, 3936, 362, 18, 30, 2171, 25556, 181782, 337192, 178366, 25314, 1211, 23, 62, 7429, 177678, 2437726, 8965354, 8980642, 2404372, 176998, 3914, 44
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+------------------------------------
1 | 1 2 2 4 4 9
2 | 2 5 9 26 62 205
3 | 2 8 22 120 600 3936
4 | 4 22 126 1267 14164 181782
5 | 4 44 592 13600 337192 8965354
6 | 8 135 3936 178366 8980642 477655760
MATHEMATICA
A368302[n_, m_] := 1/(4*n*m) (DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*If[EvenQ[n], 1/2*DivisorSum[m, EulerPhi[#] (2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*2^(2 m/#)) &], DivisorSum[m, EulerPhi[#] (2^((n - 1)*m/LCM[2, #])*2^(m/#)) &]] + m*If[EvenQ[m], 1/2*DivisorSum[n, EulerPhi[#] (2^(n*m/LCM[2, #]) + 2^(m*n/#)*Boole[EvenQ[#]]) &], DivisorSum[n, EulerPhi[#]*2^(m*n/#) &, EvenQ]] + n*m*2^(n*m/2)*Which[EvenQ[n] && EvenQ[m], 3/4, OddQ[n*m], 0, OddQ[n + m], 1/2])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved