login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222188 Table read by antidiagonals: number of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns. 8
2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 36, 34, 8, 13, 78, 158, 158, 78, 13, 18, 237, 708, 1459, 708, 237, 18, 30, 687, 4236, 14676, 14676, 4236, 687, 30, 46, 2299, 26412, 184854, 340880, 184854, 26412, 2299, 46 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened

S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.4.7.

S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.

S. N. Ethier and Jiyeon Lee, Parrondo games with two-dimensional spatial dependence, arXiv:1510.06947 [math.PR], 2015.

EXAMPLE

Array begins:

2,  3,   4,     6,      8,      13,        18,         30, ...

3,  7,  13,    34,     78,     237,       687,       2299, ...

4, 13,  36,   158,    708,    4236,     26412,     180070, ...

6, 34, 158,  1459,  14676,  184854,   2445918,   33888844, ...

8, 78, 708, 14676, 340880, 8999762, 245619576, 6873769668, ...

...

MATHEMATICA

b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n); b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2) /(4*n), (2^(m*n/2) + 2^((m+2)*n/2))/(8*n)]; b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4*n); b2c[m_, n_] := If[OddQ[ m], Sum[If [OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8*n)]; b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n]; b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n-3)/2); b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2-4); a[m_, n_] := Module[{b}, If [OddQ[m], If [OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]]; Table[a[m - n+1, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-Fran├žois Alcover, Dec 05 2015, adapted from Michel Marcus's PARI script *)

PROG

(PARI)

odd(n) = n%2;

b1(m, n) = sumdiv(m, c, sumdiv(n, d, eulerphi(c)*eulerphi(d)*2^(m*n/lcm(c, d))))/(4*m*n);

b2a(m, n) = if (odd(m), 2^((m+1)*n/2)/(4*n), (2^(m*n/2)+2^((m+2)*n/2))/(8*n));

b2b(m, n) = sumdiv(n, d, if (d>=2, eulerphi(d)*2^((m*n)/d), 0))/(4*n);

b2c(m, n) = if (odd(m), sum(j=1, n-1, if (odd(n/gcd(j, n)), 2^((m+1)*gcd(j, n)/2)-2^(m*gcd(j, n))))/(4*n), sum(j=1, n-1, if (odd(n/gcd(j, n)), 2^(m*gcd(j, n)/2)+2^((m+2)*gcd(j, n)/2)-2^(m*gcd(j, n)+1)))/(8*n));

b2(m, n) = b2a(m, n) + b2b(m, n) + b2c(m, n);

b3(m, n) = b2(n, m);

b4oo(m, n) = 2^((m*n - 3)/2);

b4eo(m, n) = 3*2^(m*n/2 - 3);

b4ee(m, n) = 7*2^(m*n/2 - 4);

a(m, n) = {if (odd(m), if (odd(n), b = b4oo(m, n), b = b4eo(m, n)), if (odd(n), b = b4eo(m, n), b = b4ee(m, n))); b += b1(m, n) + b2(m, n) + b3(m, n); return (b); }

\\ Michel Marcus, Feb 13 2013

CROSSREFS

Rows give A000029, A222187, A222189-A222191. Main diagonal is A209251.

Cf. A184271.

Sequence in context: A180985 A227385 A049790 * A184271 A269098 A119795

Adjacent sequences:  A222185 A222186 A222187 * A222189 A222190 A222191

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Feb 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 18:59 EST 2019. Contains 329149 sequences. (Running on oeis4.)