OFFSET
1,2
LINKS
Peter Kagey, Illustration of T(2,2)=28
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5
---+----------------------------------------------------
1 | 1 4 6 23 52
2 | 4 28 194 2196 26524
3 | 6 194 7296 350573 17895736
4 | 23 2196 350573 67136624 13744131446
5 | 52 26524 17895736 13744131446 11258999068672
6 | 194 351588 954495904 2932037300956 9607679419823148
MATHEMATICA
A368304[n_, m_]:=1/(4*n*m) (DivisorSum[n, Function[d, DivisorSum[m, Function[c, EulerPhi[c]EulerPhi[d]4^(m*n/LCM[c, d])]]]]+If[EvenQ[n], n/2*DivisorSum[m, EulerPhi[#](4^(n*m/LCM[2, #])+4^((n-2)*m/LCM[2, #])*4^(2m/#)*Boole[EvenQ[#]])&], n*DivisorSum[m, EulerPhi[#](4^(n*m/#))&, EvenQ]]+If[EvenQ[m], m/2*DivisorSum[n, EulerPhi[#](4^(n*m/LCM[2, #])+4^((m-2)*n/LCM[2, #])*4^(2n/#)*Boole[EvenQ[#]])&], m*DivisorSum[n, EulerPhi[#](4^(m*n/#))&, EvenQ]]+Which[EvenQ[n]&&EvenQ[m], (n*m)/4 (3*2^(n*m)), OddQ[n*m], 0, OddQ[n+m], (n*m)/2 (2^(n*m))])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved