login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368304
Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal and vertical reflections by an asymmetric tile.
5
1, 4, 4, 6, 28, 6, 23, 194, 194, 23, 52, 2196, 7296, 2196, 52, 194, 26524, 350573, 350573, 26524, 194, 586, 351588, 17895736, 67136624, 17895736, 351588, 586, 2131, 4798174, 954495904, 13744131446, 13744131446, 954495904, 4798174, 2131
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5
---+----------------------------------------------------
1 | 1 4 6 23 52
2 | 4 28 194 2196 26524
3 | 6 194 7296 350573 17895736
4 | 23 2196 350573 67136624 13744131446
5 | 52 26524 17895736 13744131446 11258999068672
6 | 194 351588 954495904 2932037300956 9607679419823148
MATHEMATICA
A368304[n_, m_]:=1/(4*n*m) (DivisorSum[n, Function[d, DivisorSum[m, Function[c, EulerPhi[c]EulerPhi[d]4^(m*n/LCM[c, d])]]]]+If[EvenQ[n], n/2*DivisorSum[m, EulerPhi[#](4^(n*m/LCM[2, #])+4^((n-2)*m/LCM[2, #])*4^(2m/#)*Boole[EvenQ[#]])&], n*DivisorSum[m, EulerPhi[#](4^(n*m/#))&, EvenQ]]+If[EvenQ[m], m/2*DivisorSum[n, EulerPhi[#](4^(n*m/LCM[2, #])+4^((m-2)*n/LCM[2, #])*4^(2n/#)*Boole[EvenQ[#]])&], m*DivisorSum[n, EulerPhi[#](4^(m*n/#))&, EvenQ]]+Which[EvenQ[n]&&EvenQ[m], (n*m)/4 (3*2^(n*m)), OddQ[n*m], 0, OddQ[n+m], (n*m)/2 (2^(n*m))])
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved