login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181532
a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
5
0, 1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424
OFFSET
0,4
COMMENTS
Essentially the same as A060945: a(0)=0 and a(n)=A060945(n-1) for n>=1.
lim(n->infinity) a(n+1)/a(n) = A109134 = 1.754877666..., the square of the absolute value of one of the complex-valued roots of the characteristic polynomial. [R. J. Mathar, Nov 01 2010]
The Ze4 sums, see A180662 for the definition of these sums, of the ‘Races with Ties’ triangle A035317 lead to this sequence. [Johannes W. Meijer, Jul 20 2011]
FORMULA
a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: x/(1-x-x^2-x^4). [Franklin T. Adams-Watters, Feb 25 2011]
a(n) = |A077930(n)| = ( |A056016(n+2)|-(-1)^n)/5. [R. J. Mathar, Oct 29 2010]
a(n) = A060945(n-1), n>1. [R. J. Mathar, Nov 03 2010]
EXAMPLE
a(7) = 18 = a(6) + a(5) + a(3) = 10 + 6 + 2.
a(7) = 18 = (1 0, 2, 0, 2, 0, 3) dot (10, 6, 3, 2, 1, 1, 1) = (10 + 3 + 2 + 3).
MATHEMATICA
LinearRecurrence[{1, 1, 0, 1}, {0, 1, 1, 2}, 40] (* Harvey P. Dale, Jun 20 2015 *)
CROSSREFS
All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012
Sequence in context: A172516 A102702 A077930 * A060945 A349904 A023359
KEYWORD
easy,nonn
AUTHOR
Gary W. Adamson, Oct 28 2010
EXTENSIONS
Values from a(9) on changed by R. J. Mathar, Oct 29 2010
Edited and a(0) added by Franklin T. Adams-Watters, Feb 25 2011
STATUS
approved