OFFSET
0,5
FORMULA
a(n) = p(n) - p(n-1) - p(n-3) + p(n-4), where p(n) = A000041(n).
G.f.: (1-x-x^3+x^4) / Product_{m>=1} (1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (8*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
a(6)=3 because we have [2,2,2], [2,4], and [6].
MAPLE
with(combinat): p := proc (n) options operator, arrow: numbpart(n) end proc: 1, 0, 1, 0, 2, seq(p(n)-p(n-1)-p(n-3)+p(n-4), n = 5 .. 55);
G := (1-x)*(1-x^3)/(product(1-x^j, j = 1 .. 65)): Gser := series(G, x = 0, 60): seq(coeff(Gser, x, n), n = 0 .. 55);
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(FreeQ[#, 1]&&FreeQ[#, 3]&)], {n, 0, 60}] (* Harvey P. Dale, Feb 25 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Oct 28 2010
STATUS
approved