login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181531
Number of partitions of n with no part equal to 1 or 3.
0
1, 0, 1, 0, 2, 1, 3, 2, 5, 4, 8, 7, 13, 12, 20, 20, 31, 32, 47, 50, 71, 77, 105, 116, 155, 173, 225, 254, 325, 369, 465, 530, 660, 755, 929, 1066, 1300, 1493, 1805, 2076, 2493, 2867, 3421, 3934, 4669, 5368, 6337, 7282, 8560, 9828, 11505, 13198, 15394, 17641, 20507, 23475
OFFSET
0,5
FORMULA
a(n) = p(n) - p(n-1) - p(n-3) + p(n-4), where p(n) = A000041(n).
G.f.: (1-x-x^3+x^4) / Product_{m>=1} (1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (8*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
a(6)=3 because we have [2,2,2], [2,4], and [6].
MAPLE
with(combinat): p := proc (n) options operator, arrow: numbpart(n) end proc: 1, 0, 1, 0, 2, seq(p(n)-p(n-1)-p(n-3)+p(n-4), n = 5 .. 55);
G := (1-x)*(1-x^3)/(product(1-x^j, j = 1 .. 65)): Gser := series(G, x = 0, 60): seq(coeff(Gser, x, n), n = 0 .. 55);
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(FreeQ[#, 1]&&FreeQ[#, 3]&)], {n, 0, 60}] (* Harvey P. Dale, Feb 25 2015 *)
CROSSREFS
Cf. A000041.
Sequence in context: A005916 A034392 A361392 * A034393 A068932 A151533
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Oct 28 2010
STATUS
approved