OFFSET
0,3
COMMENTS
a(n) is the number of partitions of 2n into n parts, with each partition realized into non-symmetric permutations ignoring 1's. For example a(6): the partitions of 12 into 6 are: 111117 (1), 111126 (1), 111135 (1), 111144 (1), 111225 (2), 111234 (3), 111333 (1), 112233 (3), 112224 (2), 122223 (2), 222222 (1), where the number in brackets is the number of non-symmetric permutations ignoring 1's (e.g., 111234, ignore 1's -> 234 and we can also have 243 and 324, 112233->2233 or 2323 or 2332). The sum of the bracketed numbers is a(6)=18. - Jon Perry, Jun 22 2003
a(n) is an eigensequence for the sequence array of the Fredholm-Rueppel sequence A036987. - Paul Barry, Nov 03 2010
a(n) is the number of ways to express n in Napier's location numerals (see Wikipedia). - P. Christopher Staecker, Jul 04 2024
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..200 from T. D. Noe)
G. Alkauskas, Congruence properties of the function that counts compositions into powers of 2, J. Integer Sequences 13 (2010), Article: 10.5.3, 2010.
Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016. Mentions this sequence.
Jung-Chao Ban, Wen-Guei Hu, Guan-Yu Lai, and Lingmin Liao, Entropy of axial product of multiplicative subshifts, arXiv:2402.19324 [math.DS], 2024. See p. 13.
N. J. A. Sloane, Transforms.
Wikipedia, Location arithmetic.
FORMULA
G.f.: 1 / (1 - Sum_{k>=0} x^(2^k)). - Joerg Arndt, Oct 21 2012
a(n) = [n=0] + Sum_{k>=0} a(n-2^k). - Len Smiley, May 07 2001
A(x) = A(x^2)/(1 - x*A(x^2)). - Paul D. Hanna, Dec 16 2002
INVERT transform of characteristic function of powers of 2, i.e., A036987 interpreted with an offset 1 instead of 0. - Antti Karttunen, Dec 12 2003
a(n) seems to be asymptotic to A*B^n where A=0.332198..., B=1.766398... - Benoit Cloitre, Dec 17 2002. More accurately: B=1.76639811455017359722848839244009973023206928795707277527828507440838434..., A=0.58679374529351144845013208294162259198824401250194713608555348278359775... - Vaclav Kotesovec, Apr 30 2014
Satisfies A(x) = 1 + A(x) * Sum_{k>=0} x^(2^k). a(m) == 1 (mod 2) when m=2^n-1, otherwise a(m) == 0 (mod 2). - Paul D. Hanna, Aug 27 2003
a(m) == 0 (mod 4) if A000120(m+2) >= 4. In general, a(m) == 0 (mod 2^N) if A000120(m+2^(N-1)) >= 2^N. - Giedrius Alkauskas, Mar 05 2010
EXAMPLE
A(x) = A(x^2) + x*A(x^2)^2 + x^2*A(x^2)^3 + x^3*A(x^2)^4 + ... = 1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + 18x^6 + 31x^7 + ....
From Joerg Arndt, Dec 28 2012: (Start)
There are a(6)=18 compositions of 6 into powers of 2:
[ 1] [ 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 2 ]
[ 3] [ 1 1 1 2 1 ]
[ 4] [ 1 1 2 1 1 ]
[ 5] [ 1 1 2 2 ]
[ 6] [ 1 1 4 ]
[ 7] [ 1 2 1 1 1 ]
[ 8] [ 1 2 1 2 ]
[ 9] [ 1 2 2 1 ]
[10] [ 1 4 1 ]
[11] [ 2 1 1 1 1 ]
[12] [ 2 1 1 2 ]
[13] [ 2 1 2 1 ]
[14] [ 2 2 1 1 ]
[15] [ 2 2 2 ]
[16] [ 2 4 ]
[17] [ 4 1 1 ]
[18] [ 4 2 ]
(End)
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, add(a(n-2^i), i=0..ilog2(n)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 11 2014
MATHEMATICA
CoefficientList[Series[1/(1 - Sum[x^(2^i), {i, 0, 20}]), {x, 0, 20}], x]
a[0] = 1; a[n_] := a[n] = Sum[a[n-2^k], {k, 0, Log[2, n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)
PROG
(PARI) {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = 1 /(1 / subst(A, x, x^2) - x)); polcoeff(A, n))}; /* Michael Somos, Dec 20 2002 */
(PARI)
N=66; x='x+O('x^N);
Vec( 1/(1-sum(k=0, ceil(log(N)/log(2)), x^(2^k) ) ) )
/* Joerg Arndt, Oct 21 2012 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited by Franklin T. Adams-Watters, Aug 05 2005
STATUS
approved