login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082482
a(n) = floor of (2^n-1)/n.
8
1, 1, 2, 3, 6, 10, 18, 31, 56, 102, 186, 341, 630, 1170, 2184, 4095, 7710, 14563, 27594, 52428, 99864, 190650, 364722, 699050, 1342177, 2581110, 4971026, 9586980, 18512790, 35791394, 69273666, 134217727, 260301048, 505290270, 981706810
OFFSET
1,3
COMMENTS
a(n) is the largest exponent k such that (2^n)^k || (2^n)!. - Lekraj Beedassy, Jan 15 2024
LINKS
FORMULA
a(n) = (2^n - 1 - A082495(n))/n = A162214(n)/n. - Robert Israel, Dec 01 2016
EXAMPLE
a(3) = floor((2^3-1)/3) = floor(7/3) = floor(2.333) = 2.
MAPLE
seq(floor((2^n-1)/n), n=1..100); # Robert Israel, Dec 01 2016
PROG
(PARI) for (n=1, 50, print1(floor((2^n-1)/n)", "))
CROSSREFS
a(n) = A053638(n) - 1.
Sequence in context: A023359 A357455 A357453 * A066000 A011957 A019436
KEYWORD
nonn
AUTHOR
Jon Perry, Apr 27 2003
STATUS
approved