OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Amiram Eldar, Plot of (1/n^2) * Sum_{k=1..n} a(k) for n = 2^(8..23).
Arnold Knopfmacher and Florian Luca, Digit sums of binomial sums, Journal of Number Theory, Vol. 132, No. 2 (2012), pp. 324-331.
Florian Luca and Igor E. Shparlinski, On the g-ary expansions of middle binomial coefficients and Catalan numbers, The Rocky Mountain Journal of Mathematics, Vol. 41, No. 4 (2011), pp. 1291-1301.
FORMULA
Should be asymptotic to n.
From Amiram Eldar, Dec 17 2024: (Start)
Two formulas from Luca and Shparlinski (2011):
a(n) >= 3 for all but finitely many positive integers n.
a(n) >> eps(n) * sqrt(log(n)), for all n <= X with at most o(X) exceptions as X -> oo, where eps(n) is a function tending to zero as n -> oo.
a(n) > c * log(n)/log(log(n)) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Knopfmacher and Luca, 2012). (End)
MAPLE
seq(convert(convert(binomial(2*n, n), base, 2), `+`), n=0..100); # Robert Israel, Mar 27 2018
MATHEMATICA
Table[DigitCount[Binomial[2n, n], 2, 1], {n, 0, 90}] (* Harvey P. Dale, Jul 20 2023 *)
PROG
(PARI) a(n)=sum(k=1, length(binary(binomial(2*n, n))), component(binary(binomial(2*n, n)), k))
(PARI) a(n) = hammingweight(binomial(2*n, n)); \\ Michel Marcus, Mar 27 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Apr 27 2003
STATUS
approved