login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082484 First of four consecutive primes p, q, r, s such that neither of the congruences p^x+q^x = r (mod s) and q^x-p^x = r (mod s) has a solution. 1
3, 53, 71, 97, 109, 127, 137, 149, 151, 179, 197, 239, 293, 311, 401, 419, 431, 439, 457, 467, 503, 557, 563, 601, 619, 641, 643, 653, 673, 769, 887, 907, 971, 991, 1021, 1031, 1093, 1103, 1123, 1151, 1297, 1361, 1367, 1373, 1427, 1447, 1459, 1471, 1481 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Is this sequence infinite?

LINKS

Table of n, a(n) for n=1..49.

FORMULA

a(n) = prime(A082475(n)).

EXAMPLE

2 is not in the sequence because 2^1+3^1 = 5 (mod 7).

17 is not in the sequence because 19^4-17^4 = 23 (mod 29).

PROG

(PARI) { for (p = 1, 300, f = 0; for (x = 1, prime(p + 3) - 1, if ((prime(p + 1)^x + prime(p)^x - prime(p + 2))%prime(p + 3) == 0 || (prime(p + 1)^x - prime(p)^x - prime(p + 2))%prime(p + 3) == 0, f = 1; break)); if (f == 0, print(prime(p)))) }

CROSSREFS

Cf. A082371, A082475.

Sequence in context: A228452 A269458 A288867 * A187805 A178608 A106997

Adjacent sequences:  A082481 A082482 A082483 * A082485 A082486 A082487

KEYWORD

easy,nonn,less

AUTHOR

Cino Hilliard, May 11 2003

EXTENSIONS

Edited and extended by David Wasserman, Oct 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 08:30 EDT 2022. Contains 353785 sequences. (Running on oeis4.)