login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136299
a(n) = 3*a(n-1) - 4*a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=7.
2
1, 2, 4, 7, 13, 23, 41, 71, 121, 199, 313, 455, 569, 455, -455, -3641, -12743, -36409, -94663, -233017, -553415, -1281593, -2912711, -6524473, -14447047, -31690297, -68972999, -149130809, -320631239, -686001721, -1461481927, -3101920825, -6561755591, -13839339065
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (1 -x -2*x^2 -x^3)/((1+x)*(1-2*x)^2).
a(n) = (11*2^n + (-1)^n)/9 - A001787(n+1)/12 if n>0. (End)
From G. C. Greubel, Apr 12 2021: (Start)
a(n) = (2^(n-2)*(41-3*n) + (-1)^n)/9 - (1/4)*[n=0].
E.g.f.: (-9 + 4*exp(-x) + (41 - 6*x)*exp(2*x))/36. (End)
MATHEMATICA
LinearRecurrence[{3, 0, -4}, {1, 2, 4, 7}, 41] (* G. C. Greubel, Apr 12 2021 *)
PROG
(Magma) [1] cat [(2^(n-2)*(41-3*n) + (-1)^n)/9: n in [1..40]]; // G. C. Greubel, Apr 12 2021
(Sage) [1]+[(2^(n-2)*(41-3*n) + (-1)^n)/9 for n in (1..40)] # G. C. Greubel, Apr 12 2021
CROSSREFS
Sequence in context: A114832 A239553 A319255 * A208354 A003116 A368299
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Mar 22 2008
STATUS
approved