login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136296
"Special augmented primes": primes p such that the decimal number 1p1 is divisible by p.
2
11, 13, 137, 9091, 909091, 5882353, 909090909090909091, 909090909090909090909090909091, 9090909090909090909090909090909090909090909090909091, 909090909090909090909090909090909090909090909090909090909090909091
OFFSET
1,1
COMMENTS
Equals A116436 INTERSECT A000040. - R. J. Mathar, Apr 24 2008
The larger terms may be only probable primes. - Franklin T. Adams-Watters, Apr 23 2008
According to the Magma Calculator (http://magma.maths.usyd.edu.au/calc/), all nine terms given for this sequence are prime. - Jon E. Schoenfield, Aug 24 2009
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..12 (all terms with <= 1000 digits)
EXAMPLE
11371/137 = 83, an integer, so the prime 137 is a term.
MATHEMATICA
max=6; a={}; For[i=1, i<=10^max, i++, If[Mod[FromDigits[Join[{1}, IntegerDigits[Prime[i]], {1}]], Prime[i]] == 0, AppendTo[a, Prime[i]]]]; a (* Stefano Spezia, Mar 26 2023 *)
PROG
(PARI) A136296k(k) = { local(l, d, lb, ub); d=factor(10^(k+1)+1)[, 1]; l=[]; lb=10^(k-1); ub=10*lb; for(i=1, #d, if(d[i]>=lb&&d[i]<ub, l=concat(l, [d[i]]))); l} l=[]; for(i=1, 60, l=concat(l, A136296k(i))); l \\ Franklin T. Adams-Watters, Apr 23 2008
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
for k in count(2):
t = 10**(k+1) + 1
d = [t//i for i in range(100, 10, -1) if t%i == 0]
yield from (di for di in d if isprime(di))
print(list(islice(agen(), 8))) # Michael S. Branicky, Mar 26 2023 following Franklin T. Adams-Watters but removing factorization
CROSSREFS
Prime members of A116436.
Sequence in context: A276694 A086549 A108090 * A094621 A178426 A252170
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Apr 20 2008
EXTENSIONS
a(4)-a(6) from M. F. Hasler, Apr 22 2008
a(7)-a(9) from Franklin T. Adams-Watters, Apr 23 2008
a(10) from Michael S. Branicky, Mar 26 2023
STATUS
approved