login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136298
a(n) = 3*a(n-1) - 4*a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=9.
3
1, 2, 4, 9, 19, 41, 87, 185, 391, 825, 1735, 3641, 7623, 15929, 33223, 69177, 143815, 298553, 618951, 1281593, 2650567, 5475897, 11301319, 23301689, 48001479, 98799161, 203190727, 417566265, 857502151, 1759743545, 3608965575
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (1 -x -2*x^2 +x^3)/((1+x)*(1-2*x)^2).
a(n) = (7*2^n - (-1)^n)/9 + A001787(n+1)/12 if n>0. (End)
From G. C. Greubel, Apr 12 2021: (Start)
a(n) = (2^(n-2)*(3*n+31) - (-1)^n)/9 + (1/4)*[n=0].
E.g.f.: (1/36)*(9 - 4*exp(-x) + (31 + 6*x)*exp(2*x)). (End)
MATHEMATICA
LinearRecurrence[{3, 0, -4}, {1, 2, 4, 9}, 41] (* G. C. Greubel, Apr 12 2021 *)
PROG
(Magma) [1] cat [(2^(n-2)*(31+3*n) - (-1)^n)/9: n in [1..40]]; // G. C. Greubel, Apr 12 2021
(Sage) [1]+[(2^(n-2)*(31+3*n) - (-1)^n)/9 for n in (1..40)] # G. C. Greubel, Apr 12 2021
CROSSREFS
Sequence in context: A018100 A052908 A036616 * A122584 A184936 A330489
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 22 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 04 2008
STATUS
approved