login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114832
Each term is previous term plus ceiling of harmonic mean of two previous terms.
0
1, 2, 4, 7, 13, 23, 40, 70, 121, 210, 364, 631, 1093, 1894, 3281, 5683, 9844, 17050, 29532, 51151, 88597, 153455, 265792, 460366, 797377, 1381098, 2392132, 4143295, 7176398, 12429886, 21529195, 37289660, 64587586, 111868981, 193762759
OFFSET
1,2
COMMENTS
For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y]. What is this sequence, asymptotically? a(n) is prime for n = 2, 4, 5, 6, 12, ... are there an infinite number of prime values?
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
Eric Weisstein's World of Mathematics, Geometric Mean.
FORMULA
a(1) = 1, a(2) = 2, for n > 2: a(n+1) = a(n) + ceiling(HarmonicMean(a(n), a(n-1))). a(n+1) = a(n) + ceiling((2*a(n)*a(n-1))/(a(n) + a(n-1))).
EXAMPLE
a(3) = 2 + ceiling(2*1*2/(1+2)) = 2 + ceiling(4/3) = 2 + 2 = 4.
a(4) = 4 + ceiling(2*2*4/(2+4)) = 4 + ceiling(16/6) = 4 + 3 = 7.
a(5) = 7 + ceiling(2*4*7/(4+7)) = 7 + ceiling(56/8) = 7 + 6 = 13.
a(6) = 13 + ceiling(2*7*13/(7+13)) = 13 + ceiling(182/13) = 13 + 10 = 23.
a(7) = 23 + ceiling(2*13*23/(13+23)) = 23 + ceiling(598/36) = 23 + 17 = 40.
a(8) = 40 + ceiling(2*23*40/(23+40)) = 40 + ceiling(1840/63) = 40 + 30 = 70.
a(9) = 70 + ceiling(2*40*70/(40+70)) = 70 + ceiling(5600/110) = 70 + 51 = 121.
a(10) = 121 + ceiling(2*70*121/(70+121)) = 121 + ceiling(16940/191) = 121 + 89 = 210.
a(11) = 210 + ceiling(2*121*210/(121+210)) = 121 + ceiling(50820/331) = 210 + 154 = 364.
a(12) = 364 + ceiling(2*210*364/(210+364)) = 364 + ceiling(152880/574) = 364 + 267 = 631.
MAPLE
a[1]:=1: a[2]:=2: for n from 2 to 40 do a[n+1]:=a[n]+ceil((2*a[n]*a[n-1])/(a[n]+a[n-1])) od: seq(a[n], n=1..40); # Emeric Deutsch, Mar 03 2006
CROSSREFS
Sequence in context: A168043 A374764 A374632 * A239553 A319255 A136299
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 19 2006
EXTENSIONS
More terms from Emeric Deutsch, Mar 03 2006
STATUS
approved