Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Jan 16 2024 16:20:10
%S 0,1,2,4,7,13,23,41,72,127,223,392,688,1208,2120,3721,6530,11460,
%T 20111,35293,61935,108689,190736,334719,587391,1030800,1808928,
%U 3174448,5570768,9776017,17155714,30106180,52832663,92714861,162703239,285524281,501060184,879299327
%N a(n) is the number of permutations pi of [n] that avoid {231,321} so that pi^4 avoids 132.
%C Number of compositions of n of the form d_1+d_2+...+d_k=n where d_i is in {1,2,4} if i>1 and d_1 is any positive integer.
%H Alois P. Heinz, <a href="/A368299/b368299.txt">Table of n, a(n) for n = 0..2000</a>
%H Kassie Archer and Aaron Geary, <a href="https://arxiv.org/abs/2312.14351">Powers of permutations that avoid chains of patterns</a>, arXiv:2312.14351 [math.CO], 2023.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,1,-1).
%F G.f.: x/((1-x)*(1-x-x^2-x^4)).
%F a(n) = Sum_{m=0..n-1} Sum_{r=0..floor(m/4)} Sum_{j=0..floor((m-4*r)/2)} binomial(m-3*r-j,r)*binomial(m-4*r-j,j).
%F a(n) = 1+a(n-1)+a(n-2)+a(n-4) where a(0)=0, a(1)=1, a(2)=2, a(3)=4.
%F a(n) = A274110(n+1) - 1.
%p a:= proc(n) option remember;
%p `if`(n<1, 0, 1+add(a(n-j), j=[1, 2, 4]))
%p end:
%p seq(a(n), n=0..37); # _Alois P. Heinz_, Dec 20 2023
%t LinearRecurrence[{2,0,-1,1,-1},{0,1,2,4,7},38] (* _Stefano Spezia_, Dec 21 2023 *)
%Y Cf. A000071 (d_i in {1,2}), A077868 (d_i in {1,3}), A274110, A303666.
%Y Partial sums of A181532.
%K nonn,easy
%O 0,3
%A _Kassie Archer_, Dec 20 2023